Interfaces for Integrating Cognitive Functions into Intelligent Vehicles

Matthias Goebl and Georg Färber {goebl,faerber}@rcs.ei.tum.de

Cognitive Functions

- Intelligent behavior requires a large set of cognitive functions
- Challenges in the integration process:
 - Every function needs several software modules
 - Interdependencies between different modules
 - Software contributed by different (groups of) developers
 - Deployment to several vehicles
- Manageable interfaces essential for successful collaboration:
 - Transparent communication for easy debugging
 - Clear design for fast comprehension
 - Stability and easy handling provides maximum benefit

Interfaces for Integration

- Automotive industry: Busses (CAN, FlexRay, AUTOSAR VFB,...)
 - Transient information, limited bandwidth, serialization, static
- Robotics: Frameworks (OROCOS, Corba, Carmen, CLARAty,...)
 - Sizeable functionality, often component design according to programming paradigm, big libraries, intensive occupation
- Cognitive Automobiles: Lightweight fast data based approach
 - Acceptable to distinct research areas (AI, CV, EE, ME, ...)
 - Database with unified interface as central information hub
 - Publication of all available qualitative and quantitative data
 - Situation awareness gain from consistent information pool
- Real-Time Database for Cognitive Vehicles (KogMo-RTDB):
 - Used as outer integration framework
 - Easy specification of data structures in RTDB objects
 - Hard real-time capable, integrates also non real-time (GUIs,...)
 - API: insert, update, search, retrieve, wait for, delete object
 - Efficient implementation (update: 8.3μs retrieve: 4.6μs IPC: 29.6μs)
 - Utilizes “cluster-in-a-box” hardware platform (multicore/HT)
 - Absolute timestamps to guarantee a consistent view
 - Data history preserved for specified time
 - Lock-less isolation between real-time and non-rt modules
 - Consistent view for knowledge processing with lower cycles
 - Sensor data association and interpolation

Simulation and Logging

- RTDB-Recorder logs all (selected) data and changes
 - Enhanced AVI (any size)
 - Videos play everywhere
 - Speed optimized (>40MB/s)
 - Precise timestamp (1 ns)
 - Tools to cut or filter logs
- RTDB-Player replays (selected) events into (another) RTDB
 - Offline analysis of (raw) data, timing, results, activity, runtime
 - Mounting position and configuration of sensors in database
 - No difference for connected modules in replay and simulation
 - Evaluation of different algorithms
 - Same GUIs and Tools usable

Integration and Results

- Successful application in several vehicles and at DARPA UC
 - Reference platform (close specification for binary compatibility)
 - Definition of modules sets for each individual vehicle
 - Configuration for road following with an active camera platform:
 - Video timestamp used to retrieve matching gaze direction from history
 - All camera parameters available
 - Video annotations in separate object, GUI shows overlay:
- Video annotations in separate object, GUI shows overlay:
- Real-time watchdog monitors and controls system via RTDB
- RTDB on embedded system (ARM,266MHz,32/8MB RAM/Flash)