
Matthias Goebl and Georg Färber {goebl,faerber}@rcs.ei.tum.de

Functional Architecture

- Architectural requirements of cognitive automobiles:
 - Distinct levels of information processing with specific temporal resolutions and real-time requirements
 - Extensive information needs by all software modules for subsequent data fusion and verification
 - Combination of algorithms with different approaches

 - Functional overview:

Software Architecture

- Real-time database „KogMo-RTDB“ as integration framework:
 - Central publication of relevant information (raw sensor data, tracked objects, situation and generated behavior)
 - Open access for maximum transparency between all cognitive layers
 - Unified interface also for simulation and situation replay
 - Intuitive API that provides methods to:
 - publish and update own data objects
 - search and retrieve objects from other modules
 - wait for updated data and new objects by others (trigger)
 - coherent view at the situation for slower modules

 - Seamless integration of real-time and non real-time modules
 - Hard real-time for critical control processes
 - No interference from visualisation and logging
 - Lock-less write protocol
 - Dynamic switch to real-time mode to prevent priority inversion

Hardware Architecture

- Selected multicore multiprocessor system provides:
 - Fast computation for image processing
 - I/O bandwidth for image and sensor data acquisition
 - Large memory for knowledge processing
 - Parallel execution of cognitive functions
 - Low latencies for interprocess communication
 - Powerful storage for logging (RAID, Flash)

 - AMD Opteron regarded as „Cluster-in-a-box“:
 - CPUs linked by Hypertransport (3.2·10^8 bytes/s, latency < 1μs)
 - Communication overhead negligible
 - Easy duplication
 - Affordable price
 - Single infrastructure components
 - 160W (2x275HE)

 Experimental Results

- Comprehensive architecture used in several vehicles
- Powerful integration platform for tight cooperation of all cognitive modules

- Measurement results of key operations show:
 - Low overhead
 - Fast response
 - Guaranteed real-time